Editace stránky Teplotní stratifikace vodních nádrží
Skočit na navigaci
Skočit na vyhledávání
Editace může být zrušena. Prosím, zkontrolujte porovnání níže, abyste se ujistili, že to chcete provést, a poté pro dokončení zrušení editace níže zobrazené změny zveřejněte.
Aktuální verze | Váš text | ||
Řádek 4: | Řádek 4: | ||
Teplotní stratifikace je typická pro jezera a nádrže mírného klimatického pásu, tzv. '''dimiktická''' - promíchávají se dvakrát v průběhu roku. Jim podobná, ale mnohem vzácnější jsou jezera '''meromiktická''', obvykle hluboká a morfologií svých břehů chráněna před větrem. Zde část vodního sloupce u dna není nikdy promíchávána a od vodních vrstev nad ní je oddělena tzv. chemoklinou. Koncentrace rozpuštěných látek ve spodní anoxické vrstvě je výrazně vyšší než ve zbytku nádrže. Mělká jezera '''polymiktická''', kde dochází k prohřátí celého vodního sloupce, mohou projít stratifikací a cirkulací mnohokrát za jediné léto. U hlubokých tropických a polárních jezer, tzv. '''holomiktických''' v podstatě nedochází k teplotní stratifikaci, a pokud ano, tak jen jednou za rok, a to v době teplotního minima, respektive maxima - tzv. '''monomixie'''. Existují také jezera '''amiktická''', která se nepromíchávají vůbec, protože jsou po celý rok pokrytá vrstvou ledu. <ref name="aaa">Jana Ambrožová, Aplikovaná a technická hydrobiologie, vydavatelství VŠCHT, Elektronická verze 1.0, 2005 </ref> | Teplotní stratifikace je typická pro jezera a nádrže mírného klimatického pásu, tzv. '''dimiktická''' - promíchávají se dvakrát v průběhu roku. Jim podobná, ale mnohem vzácnější jsou jezera '''meromiktická''', obvykle hluboká a morfologií svých břehů chráněna před větrem. Zde část vodního sloupce u dna není nikdy promíchávána a od vodních vrstev nad ní je oddělena tzv. chemoklinou. Koncentrace rozpuštěných látek ve spodní anoxické vrstvě je výrazně vyšší než ve zbytku nádrže. Mělká jezera '''polymiktická''', kde dochází k prohřátí celého vodního sloupce, mohou projít stratifikací a cirkulací mnohokrát za jediné léto. U hlubokých tropických a polárních jezer, tzv. '''holomiktických''' v podstatě nedochází k teplotní stratifikaci, a pokud ano, tak jen jednou za rok, a to v době teplotního minima, respektive maxima - tzv. '''monomixie'''. Existují také jezera '''amiktická''', která se nepromíchávají vůbec, protože jsou po celý rok pokrytá vrstvou ledu. <ref name="aaa">Jana Ambrožová, Aplikovaná a technická hydrobiologie, vydavatelství VŠCHT, Elektronická verze 1.0, 2005 </ref> | ||
==Průběh jevu u dimiktických nádrží== | ==Průběh jevu u dimiktických nádrží== | ||
K teplotní stratifikaci ve vodách dochází typicky v hlubších nádržích, ať už přírodního či antropogenního původu. Termín teplotní stratifikace zavedl v roce 1910 Birge. Podle ročních období rozlišoval v nádrži 4 stavy. Jarní cirkulace, letní stratifikace, podzimní cirkulace a zimní stagnace.<ref name="aaa" /> | K teplotní stratifikaci ve vodách dochází typicky v hlubších nádržích, ať už přírodního či antropogenního původu. Termín teplotní stratifikace zavedl v roce 1910 Birge. Podle ročních období rozlišoval v nádrži 4 stavy. Jarní cirkulace, letní stratifikace, podzimní cirkulace a zimní stagnace.<ref name="aaa"> </ref> | ||
===Jarní cirkulace=== | ===Jarní cirkulace=== | ||
Na jaře po roztátí ledového příkrovu vlivem pozvolného ohřívání hladiny dochází k vyrovnání teploty ve vodním sloupci (nejtěžší voda ve vrstvě nade dnem má v hlubokých nádržích trvale cca 4 stupně) a působením větru se vodní masy promíchávají. Toto období jarní cirkulace trvá jen krátkou dobu a v průběhu pokračujícího zvyšování teplot ustupuje letní stratifikaci.<ref name="aaa" /> | Na jaře po roztátí ledového příkrovu vlivem pozvolného ohřívání hladiny dochází k vyrovnání teploty ve vodním sloupci (nejtěžší voda ve vrstvě nade dnem má v hlubokých nádržích trvale cca 4 stupně) a působením větru se vodní masy promíchávají. Toto období jarní cirkulace trvá jen krátkou dobu a v průběhu pokračujícího zvyšování teplot ustupuje letní stratifikaci.<ref name="aaa"> </ref> | ||
===Letní stratifikace=== | ===Letní stratifikace=== | ||
Svrchní vrstvy se výrazně oteplují a ustálené klima umožní vznik teplotní stratifikace. Prohřátá voda na hladině má nižší hustotu a nemíchá se s chladnější vodou ve větší hloubce. To vede k vytvoření dvou vodních vrstev,'''epilimnionu''' a '''hypolimnionu''', oddělených tzv. teplotní skočnou vrstvou ('''metalimnion''') neboli termoklinou. Ta je definována jako vrstva vody, kde dochází k teplotnímu gradientu minimálně 1 <sup>o</sup>C/m. Nejprve se tvoří jako nejasná hranice ve větších hloubkách. V létě, kdy Slunce dodává nejvíce tepelné energie se horní epilimnion rozšiřuje. Termoklina pod ním chrání spodní chladný hypolimnion před rázovými vlivy z hladiny a tedy prolnutím s teplou vrstvou. S poklesem průměrné teploty dochází k promíchávání a ochlazování uvnitř epilimnia a později vlivem dalšího poklesu teploty v nádrži a větru se promíchá celý vodní sloupec a dojde k podzimní cirkulaci.<ref name="aaa" /> | Svrchní vrstvy se výrazně oteplují a ustálené klima umožní vznik teplotní stratifikace. Prohřátá voda na hladině má nižší hustotu a nemíchá se s chladnější vodou ve větší hloubce. To vede k vytvoření dvou vodních vrstev,'''epilimnionu''' a '''hypolimnionu''', oddělených tzv. teplotní skočnou vrstvou ('''metalimnion''') neboli termoklinou. Ta je definována jako vrstva vody, kde dochází k teplotnímu gradientu minimálně 1 <sup>o</sup>C/m. Nejprve se tvoří jako nejasná hranice ve větších hloubkách. V létě, kdy Slunce dodává nejvíce tepelné energie se horní epilimnion rozšiřuje. Termoklina pod ním chrání spodní chladný hypolimnion před rázovými vlivy z hladiny a tedy prolnutím s teplou vrstvou. S poklesem průměrné teploty dochází k promíchávání a ochlazování uvnitř epilimnia a později vlivem dalšího poklesu teploty v nádrži a větru se promíchá celý vodní sloupec a dojde k podzimní cirkulaci.<ref name="aaa"> </ref> | ||
===Podzimní cirkulace=== | ===Podzimní cirkulace=== | ||
Proces je podobný jako jarní cirkulace, ale má opačný charakter. Postupný pokles teploty v nádrži vede k ustálení na cca 4 <sup>o</sup>C v celé nádrži. Další ochlazování okolního prostředí s nástupem zimních měsíců vede k inverznímu uspořádání vodních vrstev - zimní stagnaci.<ref name="aaa" /> | Proces je podobný jako jarní cirkulace, ale má opačný charakter. Postupný pokles teploty v nádrži vede k ustálení na cca 4 <sup>o</sup>C v celé nádrži. Další ochlazování okolního prostředí s nástupem zimních měsíců vede k inverznímu uspořádání vodních vrstev - zimní stagnaci.<ref name="aaa"> </ref> | ||
===Zimní stagnace=== | ===Zimní stagnace=== | ||
Vlivem anomálie v závislosti hustoty vody na teplotě, kdy nejtěžší voda není těsně před bodem mrazu, ale ta o teplotě 3.96 <sup>o</sup>C, je vrstva na dně s přibližně touto teplotou oddělena od postupně mrznoucích horních vrstev nádrže. Tato zásadní vlastnost vody umožňuje organismům přežití i když je teplota okolí nádrže dlouhodobě pod bodem mrazu.<ref name="aaa" /> | Vlivem anomálie v závislosti hustoty vody na teplotě, kdy nejtěžší voda není těsně před bodem mrazu, ale ta o teplotě 3.96 <sup>o</sup>C, je vrstva na dně s přibližně touto teplotou oddělena od postupně mrznoucích horních vrstev nádrže. Tato zásadní vlastnost vody umožňuje organismům přežití i když je teplota okolí nádrže dlouhodobě pod bodem mrazu.<ref name="aaa"> </ref> | ||
[[Soubor:untitled.jpg]]<br/> | [[Soubor:untitled.jpg]]<br/> | ||
Zdroj obrázku<ref>Jana Říhová Ambrožová, Encyklopedie hydrobiologie, vydavatelství VŠCHT, Elektronická verze,2006</ref> | Zdroj obrázku<ref>Jana Říhová Ambrožová, Encyklopedie hydrobiologie, vydavatelství VŠCHT, Elektronická verze,2006</ref> | ||
Řádek 39: | Řádek 39: | ||
Jana Říhová Ambrožová, Encyklopedie hydrobiologie, vydavatelství VŠCHT, Elektronická verze,2006 | Jana Říhová Ambrožová, Encyklopedie hydrobiologie, vydavatelství VŠCHT, Elektronická verze,2006 | ||