7 218
editací
m (added Category:Ekologie v praxi using HotCat) |
|||
(Není zobrazena jedna mezilehlá verze od stejného uživatele.) | |||
Řádek 29: | Řádek 29: | ||
*výskyt tekuté vody zejména v oceánech, | *výskyt tekuté vody zejména v oceánech, | ||
*před účinky elektricky nabitých částic kosmického záření a zejména tzv. slunečního větru je povrch Země chráněn [[w:Magnetické pole Země|geomagnetickým polem]], které má charakter dipólu s magnetickou osou mírně skloněnou k ose rotace, | *před účinky elektricky nabitých částic kosmického záření a zejména tzv. slunečního větru je povrch Země chráněn [[w:Magnetické pole Země|geomagnetickým polem]], které má charakter dipólu s magnetickou osou mírně skloněnou k ose rotace, | ||
*průměrná teplota zemského povrchu, která činí v současné době + | *průměrná teplota zemského povrchu, která činí v současné době + 15° C, což je zhruba o 30° C více, než kolik by měla planeta v téže poloze vůči Slunci, ale bez zemské atmosféry. Rozdíl je dán tzv. skleníkovým efektem. Protože hlavními skleníkovými plyny jsou vodní pára, oxid uhličitý a metan, je tento faktor spjat s existencí života na Zemi, | ||
*[[w:ozonová vrstva|ozonová vrstva]] brání přístupu život nebezpečnému ultrafialovému záření Slunce až na zemský povrch. Existence ozonové vrstvy úzce souvisí s výskytem kyslíku v zemské atmosféře. Ještě před 700 miliony let bylo kyslíku v zemské atmosféře tak málo, že ozonová vrstva neměla z čeho vznikat. V době, kdy ozonová vrstva neexistovala, byl život na Zemi omezen na hlubší pásma v mořích a jezerech (voda totiž ultrafialové záření vydatně pohlcuje), | *[[w:ozonová vrstva|ozonová vrstva]] brání přístupu život nebezpečnému ultrafialovému záření Slunce až na zemský povrch. Existence ozonové vrstvy úzce souvisí s výskytem kyslíku v zemské atmosféře. Ještě před 700 miliony let bylo kyslíku v zemské atmosféře tak málo, že ozonová vrstva neměla z čeho vznikat. V době, kdy ozonová vrstva neexistovala, byl život na Zemi omezen na hlubší pásma v mořích a jezerech (voda totiž ultrafialové záření vydatně pohlcuje), | ||
*dosud nejdelší homeostatický cyklus na Zemi objevili geologové teprve nedávno. Růst zastoupení [[w:oxid uhličitý|oxidu uhličitého]] v atmosféře znamená zvýšení velikosti [[skleníkový jev|skleníkového efektu]], a tedy celkové oteplení Země. Tím se zvyšuje výpar vody z řek, jezer a především oceánů, což má za následek mocnější dešťové srážky. Vodní kapičky vymývají oxid uhličitý z atmosféry, a ten je na povrchu oceánů dychtivě pohlcován [[w:plankton|planktonem]], který jej včleňuje do svých organismů. Když plankton hyne, padají jeho ostatky na oceánské dno, kde se oxid uhličitý zabuduje do [[w:vápenec|vápence]] (CaCO<sub>3</sub>). Vlivem podsouvání [[w:tektonická deska|litosférických desek]] se vápenec dostává skluzem přes [[w:zemská kůra|zemskou kůru]] do vnějšího pláště až do hloubek, kde se taví magmatickým ohřevem. Prostřednictvím sopek se takto znovu uvolněný oxid uhličitý dostává zpět do zemské atmosféry a tak opět ovlivňuje velikost skleníkového efektu. Celý cyklus trvá zhruba půl miliardy let<ref>Grygar J. (2004): Kosmické katastrofy. Stabilita životního prostředí na Zemi. Přednáška proslovená v cyklu "Otázky a názory" dne 6. prosince 1994 na ČVUT v Praze. In: Věda a víra, ALDEBARAN, ISBN 80-903117-2-5. | *dosud nejdelší homeostatický cyklus na Zemi objevili geologové teprve nedávno. Růst zastoupení [[w:oxid uhličitý|oxidu uhličitého]] v atmosféře znamená zvýšení velikosti [[skleníkový jev|skleníkového efektu]], a tedy celkové oteplení Země. Tím se zvyšuje výpar vody z řek, jezer a především oceánů, což má za následek mocnější dešťové srážky. Vodní kapičky vymývají oxid uhličitý z atmosféry, a ten je na povrchu oceánů dychtivě pohlcován [[w:plankton|planktonem]], který jej včleňuje do svých organismů. Když plankton hyne, padají jeho ostatky na oceánské dno, kde se oxid uhličitý zabuduje do [[w:vápenec|vápence]] (CaCO<sub>3</sub>). Vlivem podsouvání [[w:tektonická deska|litosférických desek]] se vápenec dostává skluzem přes [[w:zemská kůra|zemskou kůru]] do vnějšího pláště až do hloubek, kde se taví magmatickým ohřevem. Prostřednictvím sopek se takto znovu uvolněný oxid uhličitý dostává zpět do zemské atmosféry a tak opět ovlivňuje velikost skleníkového efektu. Celý cyklus trvá zhruba půl miliardy let<ref>Grygar J. (2004): Kosmické katastrofy. Stabilita životního prostředí na Zemi. Přednáška proslovená v cyklu "Otázky a názory" dne 6. prosince 1994 na ČVUT v Praze. In: Věda a víra, ALDEBARAN, ISBN 80-903117-2-5. | ||
Řádek 120: | Řádek 120: | ||
<references /> | <references /> | ||
===Související články=== | === Související články === | ||
*[[Ekologie]] | *[[Ekologie]] | ||
Řádek 126: | Řádek 126: | ||
*[[Ekosystém]] | *[[Ekosystém]] | ||
*[[Evoluce]] | *[[Evoluce]] | ||
*[[Kvalita | *[[Kvalita života]] | ||
===Externí odkazy=== | ===Externí odkazy=== | ||
Řádek 160: | Řádek 160: | ||
[[Kategorie:Ekologie v praxi]] | [[Kategorie:Ekologie v praxi]] | ||
{{jdl}} | {{jdl}} | ||
<references /> |