Kopcilova Michaela

Připojil(a) se dne 9. 4. 2019
Varování: Nejste přihlášen(a). Pokud uložíte jakoukoli editaci, vaše IP adresa bude zveřejněna v historii této stránky. Pokud se přihlásíte nebo si vytvoříte účet, vaše editace budou připsány vašemu uživatelskému jménu a získáte i další výhody.

Editace může být zrušena. Prosím, zkontrolujte porovnání níže, abyste se ujistili, že to chcete provést, a poté pro dokončení zrušení editace níže zobrazené změny zveřejněte.

Aktuální verze Váš text
Řádek 17: Řádek 17:
According to the life cycle analysis conducted by California-based non-profit group Sustainable Surf, a typical 6’0” short board, weighing approximately 2.5 kilograms emits over 270 kilograms of CO2 during its lifecycle, spanning from manufacturing to disposal (‘The Ecoboard Lifecycle Study |’, 2016).
According to the life cycle analysis conducted by California-based non-profit group Sustainable Surf, a typical 6’0” short board, weighing approximately 2.5 kilograms emits over 270 kilograms of CO2 during its lifecycle, spanning from manufacturing to disposal (‘The Ecoboard Lifecycle Study |’, 2016).


Also, the impact of transportation is surprising. It is usual that the materials have travelled 9000km before being assembled. 80 % of blanks are ordered from overseas. Transporting the materials is actually worse than the materials used. However, some consumers are buying boards from local shapers, which, at least, cuts down on packaging materials (‘The Ecoboard Lifecycle Study |’, 2016; Vartiainen, 2018).
Also, the impact of transportation is surprising. It is usual that the materials have travelled 9000km before being assembled. 80 % of blanks are ordered from overseas. Transporting the materials is actually worse that the materials used. However, some consumers are buying boards from local shapers, which, at least, cuts down on packaging materials (‘The Ecoboard Lifecycle Study |’, 2016; Vartiainen, 2018).


'''Production of sustainable surfboards'''
'''Production of sustainable surfboards'''
Řádek 27: Řádek 27:
<u>'''Blanks'''</u>
<u>'''Blanks'''</u>


#<u>Recycling old blanks</u> – mixing collected polyurethane cuttings (60%) from old surfboards with virgin foam. Recycling method works only with EPS and does not work with polyurethane (PU). However, PU is preferred because it is more flex, more dense, stronger and cheaper. EPS has tendency to be dumped quicker. PU blanks cannot be recycled as easily as EPS because PU blank sucks the resin into it  (Woody, 2009).
#<u>Recycling old blanks</u> – mixing collected polyurethane cuttings (60%) from old surfboards with virgin foam. Recycling method works only with EPS and does not work with PU. However, PU is preferred because it is more flex, more dense, stronger and cheaper. EPS has tendency to be dumped quicker. PU blanks cannot be recycled as easily as EPS because PU blank sucks the resin into it  (Woody, 2009).
#<u>Plant based materials</u>  – in the past blanks made of sugar. However this is a difficult material. It rots very quickly once the board is broken.
#<u>Plant based materials</u>  – in the past blanks made of sugar. However this is a difficult material. It rots very quickly once the board is broken.
#<u>Wood</u> has been used as a principal material in the surfboard construction since ancient Hawaiians started to shape wave-riding tools. However, wood is heavy and does not have same performance (Barcelos, Magnago, & Leripio, 2018).
#<u>Wood</u> has been used as a principal material in the surfboard construction since ancient Hawaiians started to shape wave-riding tools. However, wood is heavy and does not have same performance (Barcelos, Magnago, & Leripio, 2018).
Řádek 36: Řádek 36:


#<u>Bio-based resin</u> - pine sap and rapid-renewable plant oils (used in the bio fuel industry (‘Moss Research Announces “Industry-First” Sustainable Surfboards’, 2011).
#<u>Bio-based resin</u> - pine sap and rapid-renewable plant oils (used in the bio fuel industry (‘Moss Research Announces “Industry-First” Sustainable Surfboards’, 2011).
#<u>Super Sap</u> made by Entropy Resin is made of byproducts of the pulp and paper industry and the biofuels industry, with total biological content varying between 25-50% depending on the specific resin used.  Research showed 50% reduction of CO2 emissions in Super Sap resin compared to normal resins (Michelena, Graham-Jones, Summerscales, & Hall, 2016).
#<u>Super Sap</u> made by Entropy Resin is made of byproducts of the pulp and paper industry and the biofuels industry, with total biological content varying between 25-50% depending on the specific resin used.  Research showed 50% reduction of CO2 emissions in Super  Sap resin compared to normal resins (Michelena, Graham-Jones, Summerscales, & Hall, 2016).


*Bio-based resin, however, cannot be 100% ecological because it is based on petrol. Surfboard constructors argue that bio-based resins are good but have also some disadvantages such as higher price, lower strength and not being as white as epoxy resins (Vartiainen, 2018).
*Bio-based resin, however, cannot be 100% ecological because it is based on petrol. Surfboard constructors argue that bio-based resins are good but have also some disadvantages such as higher price, lower strength and not being as white as epoxy resins (Vartiainen, 2018).
Řádek 44: Řádek 44:
In normal surfboards, fiberglass is used. The overall CO2 footprint contribution of fiberglass is only 5%. Thus, alternatives to fiberglass are unlikely to result in any major environmental benefit through displacing fiberglass alone. However, alternatives to fiberglass exist: woven bamboo cloth, hemp cloth, and bamboo veneer. These alternatives have varying impacts on performance, durability, and visual appearance.
In normal surfboards, fiberglass is used. The overall CO2 footprint contribution of fiberglass is only 5%. Thus, alternatives to fiberglass are unlikely to result in any major environmental benefit through displacing fiberglass alone. However, alternatives to fiberglass exist: woven bamboo cloth, hemp cloth, and bamboo veneer. These alternatives have varying impacts on performance, durability, and visual appearance.


#<u>Bamboo</u> appears to be the most favorable. A bamboo plantation absorbs 5x more carbon dioxide and puts out 35% more oxygen than the equivalent plantation of trees. Bamboo is also one of nature’s most resistant fibers, and it is possible to weave these fibers together in such a way as to create a very active and responsive flex pattern in the surfboards. Bamboo fiber is also biodegradable and can be disposed of after the boards life is over (Vartiainen, 2018).
# <u>Bamboo</u> appears to be the most favorable. A bamboo plantation absorbs 5x more carbon dioxide and puts out 35% more oxygen than the equivalent plantation of trees. Bamboo is also one of nature’s most resistant fibers, and it is possible to weave these fibers together in such a way as to create a very active and responsive flex pattern in the surfboards. Bamboo fiber is also biodegradable and can be disposed of after the boards life is over (Vartiainen, 2018).
#<u>Flax fiber</u> is used by Notox Surfboards (French surfboard company) to replace fiberglass, which is used in regular surf boards. Flax is an engineered reinforcement fabric made from the base of flax seed plant, which provides high levels of performance and durability. Although it is one of the oldest cultivated fibers, it has been only recently started to be used as a fiberglass substitute (Michelena et al., 2016).
# <u>Flax fiber</u> is used by Notox Surfboards (French surfboard company) to replace fiberglass, which is used in regular surf boards. Flax is an engineered reinforcement fabric made from the base of flax seed plant, which provides high levels of performance and durability. Although it is one of the oldest cultivated fibers, it has been only recently started to be used as a fiberglass substitute (Michelena et al., 2016).


'''Alternative production methods'''
'''Alternative production methods'''
Řádek 51: Řádek 51:
Apart from alternative materials, there exist alternative methods of surfboard production with or without changing the material used.  
Apart from alternative materials, there exist alternative methods of surfboard production with or without changing the material used.  


#<u>Reusing the loss material</u> - only epoxy boards can be recycled. Old epoxy boards get stripped of their fiberglass shell and then either get shaped down into a new smaller board, turned into other product or just plain old food for the meal worms (Vartiainen, 2018).
# <u>Reusing the loss material</u> - only epoxy boards can be recycled. Old epoxy boards get stripped of their fiberglass shell and then either get shaped down into a new smaller board, turned into other product or just plain old food for the meal worms (Vartiainen, 2018).
#<u>Meal worms</u> live on Styrofoam and excrete completely natural and biodegradable worm poop (Vartiainen, 2018).
# <u>Meal worms</u> live on Styrofoam and excrete completely natural and biodegradable worm poop (Vartiainen, 2018).
#<u>3D printing</u> technology has been used recently in surfboard production. Red Bull and NASA is involved in this technology. However, 3D printed boards are still too heavy compared with high performance boards (Vartiainen, 2018).
# <u>3D printing</u> technology has been used recently in surfboard production. Red Bull and NASA is involved in this technology. However, 3D printed boards are still too heavy compared with high performance boards (Vartiainen, 2018).




'''References'''<blockquote>Barcelos, R. L., Magnago, R. F., & Leripio, A. A. (2018). Analysis of the technological impact on industry and its effects on waste production and disposal: a case study of the surfboard manufacturing industry. ''Ciência e Natura'', ''40''(0), 49. <nowiki>https://doi.org/10.5902/2179460X31540</nowiki>
'''Reference'''<blockquote>Barcelos, R. L., Magnago, R. F., & Leripio, A. A. (2018). Analysis of the technological impact on industry and its effects on waste production and disposal: a case study of the surfboard manufacturing industry. ''Ciência e Natura'', ''40''(0), 49. <nowiki>https://doi.org/10.5902/2179460X31540</nowiki></blockquote><blockquote>Brodeur, M., Brunet, P., & Primiani, C. (2011). Naturally Gnarly: The all-natural surfboard. ''Montreal: Mcgill''.</blockquote><blockquote>Mateus, M. M., Bordado, J. M., & dos Santos, R. G. (2017). Ultimate use of Cork – Unorthodox and innovative applications. ''Ciência & Tecnologia Dos Materiais'', ''29''(2), 65–72. <nowiki>https://doi.org/10.1016/j.ctmat.2016.03.005</nowiki></blockquote><blockquote>Michelena, A. H., Graham-Jones, J., Summerscales, J., & Hall, W. (2016). Eco-friendly Flax Fibre/Epoxy Resin/Composite System for Surfboard Production. In R. Fangueiro & S. Rana (Eds.), ''Natural Fibres: Advances in Science and Technology Towards Industrial Applications'' (pp. 267–277). Springer Netherlands.</blockquote><blockquote>Moss Research Announces “Industry-First” Sustainable Surfboards. (2011, January 25). Retrieved 9 April 2019, from SURFER Magazine website: <nowiki>https://www.surfer.com/blogs/industry-news/moss-research-announces-%e2%80%9cindustry-first%e2%80%9d-sustainable-surfboards/</nowiki></blockquote><blockquote>Sullivan, S. (2007). Sustainable Surfboards. ''Independent Study Project (ISP) Collection''. Retrieved from <nowiki>https://digitalcollections.sit.edu/isp_collection/724</nowiki></blockquote><blockquote>The Ecoboard Lifecycle Study |. (2016). Retrieved 9 April 2019, from <nowiki>http://sustainablesurf.org/2016/06/the-ecoboard-lifecycle-study/</nowiki></blockquote><blockquote>Vartiainen, N. (2018). ''THE NEW WAVE OF SUSTAINABLE SURF INDUSTRY''. 71.</blockquote><blockquote>Woody, T. (2009, November 18). Green Foam Blanks Tries to Limit Toxin From Making Surfboards. ''The New York Times''. Retrieved from <nowiki>https://www.nytimes.com/2009/11/19/business/energy-environment/19SURF.html</nowiki></blockquote>
 
Brodeur, M., Brunet, P., & Primiani, C. (2011). Naturally Gnarly: The all-natural surfboard. ''Montreal: Mcgill''.
 
Mateus, M. M., Bordado, J. M., & dos Santos, R. G. (2017). Ultimate use of Cork – Unorthodox and innovative applications. ''Ciência & Tecnologia Dos Materiais'', ''29''(2), 65–72. <nowiki>https://doi.org/10.1016/j.ctmat.2016.03.005</nowiki>
 
Michelena, A. H., Graham-Jones, J., Summerscales, J., & Hall, W. (2016). Eco-friendly Flax Fibre/Epoxy Resin/Composite System for Surfboard Production. In R. Fangueiro & S. Rana (Eds.), ''Natural Fibres: Advances in Science and Technology Towards Industrial Applications'' (pp. 267–277). Springer Netherlands.
 
Moss Research Announces “Industry-First” Sustainable Surfboards. (2011, January 25). Retrieved 9 April 2019, from SURFER Magazine website: <nowiki>https://www.surfer.com/blogs/industry-news/moss-research-announces-%e2%80%9cindustry-first%e2%80%9d-sustainable-surfboards/</nowiki>
 
Sullivan, S. (2007). Sustainable Surfboards. ''Independent Study Project (ISP) Collection''. Retrieved from <nowiki>https://digitalcollections.sit.edu/isp_collection/724</nowiki>
 
The Ecoboard Lifecycle Study |. (2016). Retrieved 9 April 2019, from <nowiki>http://sustainablesurf.org/2016/06/the-ecoboard-lifecycle-study/</nowiki>
 
Vartiainen, N. (2018). ''THE NEW WAVE OF SUSTAINABLE SURF INDUSTRY''. 71.
 
Woody, T. (2009, November 18). Green Foam Blanks Tries to Limit Toxin From Making Surfboards. ''The New York Times''. Retrieved from <nowiki>https://www.nytimes.com/2009/11/19/business/energy-environment/19SURF.html</nowiki></blockquote>




Všechny příspěvky do Enviwiki jsou zveřejňovány podle licencí Creative Commons Uveďte autora – Zachovejte licenci 3.0 Unported (podrobnosti najdete na Enviwiki:Autorské právo). Pokud si nepřejete, aby váš text byl nemilosrdně upravován a volně šířen, pak ho do Enviwiki neukládejte.
Uložením příspěvku se zavazujete, že je vaším dílem nebo je zkopírován ze zdrojů, které nejsou chráněny autorským právem (tzv. public domain). NEVKLÁDEJTE DÍLA CHRÁNĚNÁ AUTORSKÝM PRÁVEM BEZ DOVOLENÍ!
Storno Pomoc při editování (otevře se v novém okně)